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HYPERSONIC LAMINAR VISCOUS INTERACTION EFFECTS 

ON THE AERODYNAMICS OF TWO-DIMENSIONAL WEDGE 

AND TRTANGULAR PLANFORM WINGS 

By Mitchel H. Bertram 
Langley Research Center 

SUMMARY 

Solutions have been obtained of the effect of viscous interaction not only on the pres­
sure  and skin friction but also on the aerodynamic forces  of a sharp-leading-edge flat sur­
face. The analysis assumes the applicability of laminar-hypersonic-local-similarity­
boundary-layer theory in a perfect gas with Prandtl number unity and a constant ratio of 
specific heats. The resul ts  are presented in the form of correlation graphs which cover 
a large range of plate incidence and viscous interaction parameter and allow the effects 
of viscous interaction to  be readily determined. Computations are shown for ratios of 
specific heats of 7/5 and 5/3 and, for the aerodynamic forces,  both the two-dimensional 
wing and the triangular planform wing are considered. The resul ts  indicate that the effect 
of viscous interaction can reduce the lift-drag ratio significantly. 

INTRODUCTION 

Utilizing laminar-hypersonic-local-similarity-boundary-layertheory yields rela­
tively simple solutions in correlation form and allows the pressure,  skin friction, and 
aerodynamic coefficients for sharp plates or  wedges to be obtained. The analysis which 
follows is based on the work presented in references 1and 2 and applies for Prandtl num­
ber  unity in a perfect gas with a constant ratio of specific heats. In earlier papers by the 
present author and his coworkers (refs. 2 and 3), the effect of angle of attack on the 
boundary-layer-displacement-induced pressures  was taken into account by assuming the 
boundary layer grows in the inviscid flow behind the plane shock produced by the plate. 
With this approach it w a s  found that the viscous effects on lift and drag essentially can­
celed and the lift-drag ratio was relatively unaffected by displacement effects. White, 
however, has  shown the more nearly correct  approach is to consider the flow to be dis­
placed by both the plate inclination and the boundary layer. (See ref. 4.) In this case the 
foregoing effect on lift-drag ratio cannot be assumed to  apply and the calculation of the 
effect on surface pressure,  skin friction, and aerodynamic forces  on a flat plate or wedge 
is the subject of this paper. 
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SYMBOLS 

-a constant in expression for K4 (see eq. (4)) 

f f  

coefficients in approximation for fw (see eqs. (33)) 

C local streamwise chord of triangular planform wing 

root chord of plate with triangular planform 

C coefficient in linear formula for viscosity (see eqs. (A4) to (A6)) 

cA chord force coefficient due to  pressure 

cD drag coefficient 

cf local skin-friction coefficient 

cF average skin-friction coefficient 

cL lift coefficient 

Cm moment coefficient about leading edge of flat plate or apex of delta planform 

cN normal-force coefficient 

C -dCN/da 

f; shear s t r e s s  function 

G function of wall  temperature and specific heat ratio in laminar-boundary­
layer growth equation (see appendix A) 

K total effective flow deflection angle in hypersonic similarity form, KO + K6 

KO 
angle of plate surface relative to f ree  stream in hypersonic similarity form 

positive for  windward facing surface, negative for  leeward facing 
surface, M,B 
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K1 

K4 


M 

m 

NPr 

n 

P 

P O  


-
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coefficient in laminar -hyper sonic-local -similarity-boundary-1aye r theory 
local skin-friction equation (see eq. (31)) 

coefficient in hypersonic-similarity-theory-laminar-boundary-layer growth 
equation (see eq. (4)) 

angle of attack of wing in  hypersonic similarity form, M,a! 

local inclination of boundary layer with respect to plate surface in hypersonic 
similarity form, M,6f = M,db/dx 

length of plate 

lift-drag ratio 

moment 

free-stream Mach number 

short notation for value of (P - Po)/X as X - QO 

Prandtl number 

exponent in power-law variation of surface pressure with surface distance 

ratio of local surface pressure to free-stream static pressure 

ratio of inviscid surface pressure to free-stream static pressure 

ratio of average pressure on one side of plate of length L to free-stream 
static pressure 

ratio of average pressure on one side of plate of triangular planform with 
root chord cr to free-stream static pressure 

dynamic pressure 

Reynolds. number 
0 
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L 



S 
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X 


xCP 

a 


P 

Y 

6 

e 

h 

I.1 

P 

7 

X 


planform area of wing 

temperature (absolute) 

streamwise distance on plate measured from leading edge 

x-location of center of pressure 

angle of attack of wing 

pressure gradient parameter in transformed plane of laminar-boundary­
layer similarity theory 

ratio of specific heats 

boundary-layer thickness 

angle of inclination of surface relative to free-stream flow 

viscous interaction parameter, G d  2 

dynamic viscosity 

fluid density 

half-angle of wedge section airfoil 

viscous interaction parameter, 

Subscripts: 

C based on root chord r 

1 lower surface of wing 

L based on length L 

0 two-dimensional case without viscous interaction effects 

4 




r 

t 

T 

U 

W 
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00 
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lim 

max 

adiabatic wall 


stagnation 


total (including both surfaces of wing) 


upper surface of wing 


wall 


based on distance x 


based on undisturbed free-stream conditions 


triangular planform 


limiting value 


maximum 


ANALYSIS 

Pressure  Distribution 

Basic to this analysis is a solution for the pressure distribution on a plate at arbi­
trary angle of attack. The inclination of the plate surface in hypersonic similarity form 
is M,8(=&) and the local inclination of the boundary layer with respect to  the plate sur­
face is M,6;(=K6). Thus, since the effective turning angle of the fluid is assumed to be 
the sum of these two angles, in hypersonic similarity form K = K, + K6. The relation 

K6 is given by equation (7) of reference 2 as 

This relation can be more generally written (so that calculations are independent of 
wall temperature ratio) as 

where X is the notation of reference 4 for G 2 2  and G is a simple function of wall 
temperature and specific heat ratio to be given later. The solution of equation (1)requires 
a relationship between P and K and this relationship is assumed to be given by the 
hyper sonic similarity shock and expansion equations (tangent wedge theory) : 
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(K 2 0; P 2 1) 

(-59 K 8 0; 0 9 P 8 1) (3) 

and for K 2 it is assumed that P = 0. Based on the values for the boundary-
Y - 1layer-growth coefficient K4 given in  figure 1of reference 2 (modified from those given 

in  ref. l), K4 is approximated by 

where n is the local exponent in a power law f i t  to the surface pressure variation given 
by n = -(hdP/dX)/2P and Z is assumed to  be independent of wall temperature ratio 
with values as follows: for  y = 7/5, a = -0.19; for y = 5/3, % = 0. 

To obtain the pressure distribution the system of equations (l),(2) or (3), and (4) 
has to be solved. Such solutions were previously obtained by iteration in reference 2 for  
certain simple cases but in the present case were made on a high-speed digital computer 
and some details of this solution are given in  appendix A. 

An exact closed form solution is obtainable, however, i n  the limit as X - 0 
where dP/dX = (P - Po) /X = (dP/dK) dKddX. Then from equation (l), dK6/dX - l/&-
For a windward-facing plane surface, equation (2) is utilized and the result is 

where Po is obtained from equation (2) with K = G. For K, = 0, equation (5) reduces 
to (P - Po)/A = y and for  K, = 00, the result is (P - Po) /X = d m . 

In the case of a plane leeward surface, with equation (3) the solution is 

where K, is taken as positive for windward surfaces and negative for leeward surfaces. 
Accurate values from equations (5)and (6) and the inviscid pressure ratios from 
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equations (2) and (3) are given in  table I. A number of approximate solutions to the pre­
ceding system of equations are possible and some of these a re  discussed in  appendix B. 

The results from the high-speed digital computer solution of the system of equa­
tions (1)to (4) including the limiting case obtained from equations (5) and .(6)are given in 
figure 1for a large range of plate incidence and values of y of 7/5 and 5/3. The form 
of pressure parameters is that suggested by the asymptotic solutions and allows accurate 
values of pressure ratio to be obtained from a plot which covers an extremely large range 
of x. 

Values of the exponent n obtained in conjunction with the solution for pressure are 
shown in figure 2. Knowledge of this exponent is necessary for proper evaluation of skin 
friction and heat transfer. (See ref. 1.) Clearly, the values of n can differ markedly 
from the value of -1/2 given by strong interaction theory even for relatively large values 
of A. For large angles of incidence of the leeward surface (negative q),n tends to 
have large negative values which in some cases  exceed the limits of applicability of the 
hypersonic-boundary-layer similarity theory. This problem is discussed in a later sec­
tion where the skin friction is evaluated. 

Pressure  Forces 

If it is assumed that the induced pressure distribution on the plate is known from the 
analysis in the preceding section, the effect of the boundary layer on the aerodynamic 
pressure forces and skin friction may be determined. In this section only the aerody­
namic pressure forces  a r e  treated. 

Average pressure ratio on a flat plate.- If the average pressure over the plate is. -

known, the normal and chordwise pressure forces a r e  readily determined. The average 
pressure ratio on a two-dimensional plate is defined as 

-	 L 
P = k s ,  Pdx 

where x is streamwise distance on the plate measured from the leading edge and L is 
the value of x at the trailing edge of the plate. In t e rms  of the dimensionless boundary-
layer interaction parameters, equation (7) becomes 



This statement of F has drawbacks because P (and F)-. 00 as X -c 0. There is, 
however, a convenient way to avoid this problem. Equation (8) can be written in  the fol­
lowing form: 

F 	- Po = 2XL J m p  dx (9)
XL XL A2 

Values of (P - Po) /X vary over a relatively small  range and never exceed 0(1) as shown 
in figure 1. For very small values of A, the values of (P - Po) /X are close to those 
given for the X = 0 solution in the previous section as equations (5) and (6). For X - 00, 

(P - Po) /X approaches a constant which is actually the strong interaction solution; thus, 
some further simplification is allowed for machine solution. Equation (9) is now written 
as 

as X - 0, (p - P 0 ) / A L  - 2(P - PO)/hL. (See eqs. (5) and (6).) The general strong inter­
action solution given in  appendix B gives for the first t e rm in equation (10) 

where (K4)n,-1/2 is obtained from equation (4). The X i  values a r e  arbitrari ly large 
values of X for which P >> Po. The numerical machine solution of equation (10) (with 
eq. (11))utilized X i  = lo4. This solution is shown in figure 3. Here the average pres­
sure  parameter is shown as a function of X for various surface inclinations. 

The triangular planform is also of interest as a lifting device. In this case the 
assumption is made (as in ref. 5) that each filament i n  the stream and boundary layer 
over the wing remains unaffected by adjacent filaments and thus that any section of this 
wing may be treated as a section of an unswept plate with the same local chord. The 
average pressure ratio on the triangular plate is thus given by a spanwise integration of 
the average pressures  from the previous two-dimensional solution and is expressed in  
te rms  of the root chord cr of the triangular planform 
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where x is measured along the root chord from the apex of the wing. By following the 
same type of development as for the two-dimensional case, equation (12) may be written as 

where Xc r is the value of X based on the root chord of the triangular planform plate 
and [TP - Po)/g 1- CcI 

is given, as before, by equation (11)and equation (13) is solved 
numerically. As X -c 0, (5- Po)/Acr - 8/3 (P - Po)/XL. (See eqs. (5) and (6).) This 
solution giving the average pressure parameter on the triangular planform plate as a 
function of the viscous interaction parameter X for a large range of similarity incidence 
angle is presented in figure 4. 

Normal force.- These average pressures  allow the determination of normal- and 
chordwise-force coefficients as follows: 

For normal force by definition; 

two-dimensional planform with viscous interaction: 

CN = ( P I  - Pu)2/yMm2 

triangular planform with viscous interaction: 

inviscid: 

where the subscript I re fers  to  the lower surface of the wing and the subscript u to 
the upper surface of the wing. 

These equations may be rearranged into the following convenient forms: 

for the two-dimensional case, 

(15) 
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and for the triangular planform, 

The values of the pressure parameter for use in equations (15) and (16) are obtained from 
equations (10) and (13) (inviscid pressure ratios from equations (2) and (3) with K = &). 
In addition, for X -c 0, 

, e-C ~- c ~ , g~ 4 'N - 'N,O 

Xc,cN,o 3 XLCN,O 

An example of the normal-force-coefficient parameters determined from equations 
(15) and (16) for plates of zero thickness is shown in figures 5 and 6 where the parameter 
is shown as function of similarity angle of attack. To aid in  interpolation, the result at 
zero angle of attack is shown in figure 7 although X has  been removed from the normal-
force parameter in order to show more directly the effect of viscous interaction on the 
initial normal-force-curve slope. 

Chord force.- For the chordwise force of a wedge-section airfoil by definition, with 
base pressure zero, 

two-dimensional planform with viscous interaction: 

triangular planform with viscous interaction: 

inviscid : 

where 7 is the half-angle of the wedge section. 

These equations may also be rearranged into the following convenient form: 

for the two-dimensional case, 
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- 
(P ;Po),+ (“

‘A - ‘A,o -
XLCA,O p0,z + p0,u 

and for the triangular planform, 

The values of the pressure parameter for  use in equations (18) and (19) a r e  obtained from 
equations (10) and (13) (inviscid pressure ratios from equations (2) and (3) with K = I?,). 
In addition for X - 0, K, - 0, 

- c ~ , o=c ~ , ~  ‘A - ‘A,o - 4Y 
’cr A ,o ILCA,O 

Moment coefficient and center of pressure.- In coefficient form the moment about the 
leading edge of a two-dimensional flat plate is 

L 
CmMW2 =- 2 

yL2 .’o (PL - Pubdx 

or in t e r m s  of the boundary-layer-interaction parameters 

L 


For the inviscid case, 

2 - po,z - po,u 
‘m,oMW - Y 

and combining equations (21) and (22) yields 

For present purposes the most useful solution of equation (23) is obtained by separating the 
contribution of the upper and lower surfaces 
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where 

As in the solution to obtain average pressure,  further simplification for  numerical solu­
tion is possible by utilizing the strong interaction solution to  obtain the first part of the 
integral extending from X = 03 to X = Xi.  (See, for example, eqs. (9) and (lo).) In the 
present case, 

with c(P - PO)/gXemgiven by equation (11). In the limit as X - 0, the solution becomes 

X O  


where BP - Po)/gA=o is obtained from equation (5) or (6). 

The individual contributions of the windward and leeward surfaces of a flat plate to 
the moment coefficient a r e  given in figure 8 as function of X for  a wide range of plate 
inclination. If the indication of the asymptotic results in equations (26) and (26a) a r e  uti­
lized, however, one finds that a good approximation to  the moment coefficient contribution 
at all X and K, is 

n 

XL 3Y A 

The center of pressure (measured from the leading edge) is given by 

Eq. (26) o r  (26b) Eq. 
I
(22)

I 
0’ ‘, I 

Eq. (14c) Eq.’ (15) 
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The effect of viscous interaction on the center-of -pressure location (independent of y )  on 
a two-dimensional flat plate is shown in the following sketch. In general, as viscous inter­
action effects increase (increasing A),  the center of pressure moves toward the leading 
edge from midchord. 

As X -.00, xcp/L -c 1/3 and this result would seem to  be at variance with the 
trend of the machine solution at large X shown here. However, this apparent discrep­
ancy is not believed to be important as the theory is generally not valid at the largest 
and the machine solution is believed to be accurate in the valid range of A.  (See a later 
section on "Limitations of Theory.") 

In coefficient form, the moment about the apex of a delta planform wing is 

and for the inviscid case 

where c is the local chord of the wing measured streamwise, cr is the root chord, and 
xcp/c is the nondimensional streamwise center of pressure of the local chord element 
based on the two-dimensional calculation (eq. (27)). In t e rms  of the viscous interaction 
parameter and with the use of the same procedure as for the two-dimensional case, com­
bining equations (28) and (29) yields 
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which is equivalent to equation (23) for the two-dimensional case. A running integration 
of equation (30) could not be performed; therefore, because of machine time and complexity 
considerations, equation (30) w a s  not included in the solutions presented in this paper. 

Skin Friction 

Local skin-friction coefficient from hypersonic laminar-boundary-layer theory as 
given in reference 1 is 

= 0.664 K JE 
cf 1 RX," 

where C is the coefficient in the linear law for viscosity and K1 is the coefficient 
which accounts fo r  the effect of pressure gradient on the local skin friction. Also, K1 
is a function of wall  temperature ratio and the value of the exponent n in a power-law 
variation of wall pressure with distance from the leading edge. In the present case local 
similarity is assumed; thus local values of n a r e  used. (See statements after eq. (4) 
and fig. 2.) Values for K1 = f(n,Tw/To) are given in reference 1; however, for machine 
computation it w a s  convenient to determine K1 as follows: 

?! 

(eq. (7) of ref. 1) where f; was  approximated by the following equations: 

f; - 1 + a p + b p  2 + c p4 
0.4696 

a =  0.627+ 1 .830(2 )  

6/5 
(33) 

b =  -E 0.662($) + 0.03 

C =  0.0600e 

and p and n are related by 

(eq. (1) of ref. 1). Equations (33) represent an e r r o r  of l e s s  than 1 percent compared with 
exact values for the range 0 S p S 1.2; and were originally used for all the calculations. 
However, it w a s  found, after calculations were done, that for the larger negative values of 
angle of incidence G, p could exceed 1.2 by large amounts and thus K1 could have 
extremely large e r ro r s .  It is believed that local similarity is not valid for these cases; 
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however, in these cases  the pressure is very low and it should be necessary only to  insure 
that K1 is of a reasonable magnitude. Thus equations (33) were  used for  0 5 p 5 1, and 
for  p > 1,this equation w a s  extrapolated linearly with n utilizing the slope obtained 
from equations (33) with equation (34) at p = 1 or  

where 

and a, b, and c are as given in equations (33). 

Average skin friction, two dimensional.- For one side of a two-dimensional plate, 
the average skin friction is defined as (and with equation (31)) 

If equation (36) is put into t e r m s  of the viscous interaction parameter and normalized with 
respect to the skin friction on a flat plate at zero incidence without viscous interaction 

there is obtained 
‘ ~ ~ 0 7 

Now P -+ 03 as X -.00 but this problem may be circumvented for purposes of numerical 
integration in a manner analogous to  that utilized in solving for e and in previous 
sections. In other words, a closed form solution will  be obtained for X > X i  and a te rm 
determined by numerical integration will  be added for X < X i .  Thus, equation (37) may be 
written as 

If the flat-plate equation (eq. (11))is used for the value of P in the left-hand integral, 
the solution for  equation (38) is with BP - Po)/g~+OO= m 
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For Po = 0 or very small, equation (39a) is inadequate, but for Po << mX, a 
solution is readily determined: 

In the machine calculation, equation (39a) was used when Po 2 0.001 and equation (39b), 
when Po < 0.001. Actually, there is little difference in the result if equation (39b) is 
used for all the calculations regardless of the value of Po. For example, if xi is 100 
t imes greater than Po, the left-hand te rm of equation (39b) is only 0.1 percent different 
from the left-hand te rm of equation (39a); if X i  is only 10 t imes greater than Po, the 
difference in the left-hand term of the two equations is still l e s s  than 1percent. 

Results from the high-speed digital computer solution of equations (39) a r e  shown in 
figures 9 and 10. Figure 9 presents results for the plate surface at zero incidence and 
figure 10 shows the results for windward and leeward surfaces taken individually. Values 
of useful in determining the asymptotic values of the skin-friction ratio (A -c 0) a r e  
given in table I. 

- - planform plate.- If the development in appendix CAverage skin friction - triangular _ _ _  .. 

of reference 5 is followed, the average skin friction for one side of a plate of triangular 
planform may be written, the viscous interaction parameter being used, as 

where, as before, X is based on the streamwise local chord and X is a value of X 
C r

based on the root chord. A general solution is readily obtained in the following form: 

where CF is the average skin-friction coefficient on a two-dimensional plate at 
, , r  

zero incidence, whose length is the same as the root chord of the delta wing, without vis­
cous interaction. Values of C F/CF,o are obtained from the previous solution of equa­
tions (39). For  numerical integration in this form, large values of X a r e  a problem; as 
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before, equation (41) is rewritten as follows: 

As for  the two-dimensional case (eqs. (39)), the first part of the integral can be evaluated 

in closed form. For simplicity sake, only the small Po solution was made (equivalent 

to the solution given as equation (39b)). As noted in the remarks after equations (39), 

this simplification actually affects the accuracy of the result very little for  the range of 

K, considered. Thus from equation (39b), since CF/CF,o - 2 ( K 1 ) n = - l / 2 6  as 

X -c 00, equation (42) may be written as 


as -” CF,A/CF,O,cr  - (4/3)$5 

Results f rom equation (43) by the high-speed digital computer a r e  shown in figures 9 
and 11. Figure 9 presents results for the triangular planform plate surface at zero inci­
dence and figure 11 shows the results for windward and leeward surfaces taken 
individually. 

Total skin friction of wedge-section airfoil wing.- Summing up the contribution from 
each of two surfaces of the wing yields for  the two-dimensional case 

where CF o T  -- 2CF,o and C
F,o 

= 1.328 @ / p G a n d  values of CF/CF,o are 
obtained fr& equations (39). 

Similarly, for  the triangular planform wing, 

where, ‘F,O,C,,T = “F ,O ,Cr  and ‘F,o,Cr = 1.328@/@- *,Cr and values of 

‘F,A /‘F,o,Cr are obtained from equation (43). 
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The Lift-Drag Ratio 

The lift and drag coefficients for a two-dimensional wedge-section airfoil of half-
angle 7 a r e  as follows: 

CD = CN sin a! + 

where CA, the first te rm in parentheses, is from the previous analysis in which the base 
pressure is taken as zero and the last te rm in parentheses corrects  the base pressure to 
that of the undisturbed f ree  stream. Expressing equations (46) as a ratio yields the lift-
drag ratio 

D C N t a n a ! + C A + C F T - - 47 (47) 
9 2

YM, 


in which the par ts  a r e  readily separable into t e rms  with and without viscous interaction 
as follows: 

where equations (14) and (15) a r e  used and 
c -

‘A = ‘A,o 

where equations (17)and.(18) a r e  used, and C
F7T 

is obtained from equation (44) with 

equations (39) and C F , ~ , T= 2.656 p/GL.Equations (46) and (47) a r e  adaptable to a 
plate of triangular planform by an appropriate change of subscripts; change CN to C N , ~ ,  

C ~CA to c ~ , ~ ,~ to, CF,A,T, XL to xcr, and R ~ , Lto Reo,,,. 

EFFECT OF VISCOUS INTERACTION ON THE LIFT-DRAG RATIO 

OF WINGS WITH ZERO THICKNESS 

The solutions so far presented can generally be applied to wedge-section airfoil 
wings with arbitrary angle although certain examples have been computed which 
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specifically apply to  plates of zero thickness. (See figs. 5 to 7 and sketch on page 13.) 
When the lift-drag ratio is computed, individual cases  a re  readily done with the use of 
these graphs; however, the computation of a large number of cases  can increase the prob­
lem of preparation and presentation to  unmanageable proportions. Thus, in the present 
case only the results for the zero thickness wing a re  considered. 

The calculations were done for  values of y of 7/5 and 5/3, the two-dimensional 
and triangular planform, and wall  temperature to stagnation temperature ratios in the 
range 0 to 1. Required values of G and C were calculated as shown in appendix A. 
The values of total average skin friction at zero angle of attack without viscous interaction 
were found to be as shown in figure 12. 

An example of the sor t  of curves from which (L/D),, w a s  obtained is shown in 
figure 13(a) where the lift-drag ratio is shown as a function of lift coefficient for the par­
ticular case of a two-dimensional wing in helium flow at a Mach number of 20 with adia­
batic wall  conditions. In this case the effect of viscous interaction is marked even at high 
Reynolds numbers. This same case is shown in figure 13(b) but the lift coefficient is 
shown as a function of the hypersonic similarity angle of attack. At very small angles of 
attack where CN and CL a r e  essentially linear with a, accurate values of CL can 
be obtained from the equation 

-c- Ka[ dCN 'N ) -(%) 'F,o,.] 
CL7a-c0 da! cN,o cF,o eo 

where, for  a flat plate consistent with the hypersonic approximations so far used 
(dCN/ da!)ate =4/M,  andvalues of CN/CN and c F / c F , o  at a! = 0 a r e  obtained 

7 0  

from figures 7 and 9. The value of CF can be obtained from figure 12 o r  any other 
laminar theory. Note that in the exampie )presented in figure 13 (b), the curve for CL 
without viscous interaction is linear up to about Ka = 0.4 and for the cases  with viscous 
interaction the extent of linearity increases as Reynolds number decreases until for A = 5 
the CL curve is essentially linear up to about Ka = 1. 

The overall results for the effect of viscous interaction on (L/D),, are shown in 
figure 14 where the ratio of (L/D),= with viscous interaction to the value of (L/D)m, 
without viscous interaction is shown as a function of the viscous interaction parameter A. 
One readily sees  that there is a significant effect of wall  temperature on the importance of 
viscous interaction and that viscous interaction can reduce (L/D),, significantly. The 
effect of temperature is ascribed to pressure-gradient effect on the skin friction since. i n  
the present context there is no effect of wall  temperature on normal force when X is 
utilized as the variable. At the highest Reynolds numbers (lower values of A) ,  the effect 
of viscous interaction. is more or less independent of Mach number but is Mach number 
dependent at lower Reynold? numbers. On the other hand, the changes in (L/D),= ratio 
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due to the change in planform from two dimensional t o  triangular in shape or  a change in  
y from 7/5 to 5/3 are secondary. A plot such as figure 14 is informative but is restr ic­
ted in usefulness. Linear theory suggests another type of presentation since according to  
this theory 

(4 9) 

= f-

A correlation of the present resul ts  (CA = 0) according to  the parameters suggested 
by equation (49) is shown in figure 15. The curves representing the (L/D),, param­
eter were found to be independent of wall  temperature; however, they were a function of 
Mach number. For the cases  with viscous interaction the resul ts  correlate both for the 
two values of y considered and for the two types of planform. For the cases  without 
viscous interaction, the resul ts  correlate for  the two types of planform considered but 
differ somewhat for the two values of y. 

From figure 15, values of (L/D),, for a wide range of conditions can be found. 
To obtain the required values of CNa/CF at CY = 0 with viscous interaction, figures 7 
and 9 could be used but it has  been found expeditious to combine these two and the result 
is presented in figure 16. Thus with figure 16 only a knowledge of CN

, C Y  
(in this case 

t akenas  4/M,) and CF is required. For  the original calculations, values of 
were taken from t'hi Monaghan T-prime method (appendix A and fig. 12) but anyC ~ , o , ~

other reasonable values for  classical flat-plate laminar skin friction could be used such 
as those, for example, from the Crocco method. In the present case to obtain CF with­
out viscous interaction for the triangular planform case, CF,o,T must be multiplied by 
4/3. (See statements after eq. (43).) 

LIMITATIONS OF THEORY 

There are two regions on a plate where deviations from the local similarity theory 
might be expected. The first is very close to the leading edge and the second is the 
trailing-edge region. In the near leading-edge region the effect is noted as a departure 
from the viscous interaction theory with a tendency toward a pressure plateau which has 
been found in several  experiments. There have been several interpretations of this effect 
but, in general, the parameter determining its onset is much the same from various theo­
ries and appears to agree with experiment. Talbot (ref. 6) interprets this region of 
departure as an effect of slip flow and his result for the upstream limit of.applicability of 
ordinary viscous interaction can be approximated as 

20 




or in t e rms  of X 

Xlim "O.O185(y + 1) 

This result agrees  with the limitation set by Oguchi (as given by Mann and Bradley, ref. 7) 
from different considerations. A graph of equation (50b) is presented as figure 17 applica­
ble for y = 7/5; however, since the limit is not precise, the curves could be used for 
values of y from 1.2 to 1.67. Since aerodynamic forces  are an integration of local 
values, the limits shown in figure 17 are considered to be optimistic for  these forces.  

The second limitation is due to the upstream influence of the pressure changes at the 
wing trailing edge. This effect tends to  reduce the aerodynamic forces. No definite 
limits have been set  for  this influence which is considered by Rogers and Metcalf in  some 
detail.in reference 8 for wings in supersonic flow. The complete pressure distributions 
from flat and curved plates in references 9 and 10 tested at Mach number 6.9 indicate a 
small influence of the trailing edge on the lower surface but a significant effect on the 
upper surface. The Mach numbers and Reynolds numbers for the tes t s  of references 8, 
9, and 10 are widely different. 

CONCLUDING REMARKS 

Solutions have been obtained of the effect of viscous interaction not only on the pres­
sure and skin friction but also on the aerodynamic forces  of a sharp-leading-edge flat sur­
face. The analysis assumes the applicability of laminar-hypersonic-local-similarity­
boundary-layer theory in a perfect gas with Prandtl number unity and a constant ratio of 
specific heats. The results a r e  presented in the form of correlation graphs which cover a 
large range of plate incidence and viscous interaction parameter and allow the effects of 
viscous interaction to be readily determined. Computations are shown for  ratios of spe­
cific heats of 7/5 and 5/3 and, for the aerodynamic forces,  both the two-dimensional 
wing and the triangular planform wing are considered. The results indicate that the 
effect of viscous interaction can reduce the lift-drag ratio significantly. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., March 3, 1966. 
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APPENDIX A 

METHOD OF SOLUTION 

To solve the system of equations (l), (2) (or (3)), and (4) for obtaining the pressure 
distribution, the Runge-Kutta method to  fourth order  was used starting at the leading edge 
(A = w) with the value predicted by strong interaction theory (eq. (11)) and progressing in 
the x-direction. The increments in X set into the high-speed digital computer were as 
follows: 

1 X 


>loo 
100 to  10 

10 to 1 
1to 0.1 

0.1 to 0.01 
0.01 to 0.001 

AX 
( 0  2 K, 2 131) 

10 
5 

.025 

.0025 

.00125 

.000325 
~ _ _  -__  

AX 
po 131) 

5 
2.5 

.00125 

.00125 

.000625 

.000125 

Because of the extreme sensitivity of pressure to small e r r o r s  as the smallest values of 

X were approached, double precision (16 significant fibres) w a s  utilized for all phases 

of the calculation. Even this accuracy was  not sufficient to obtain a solution at the smaller 


'values of X. In these cases  a second-order equation was fitted between the known values 
of dP/dX at X = 0 (eq. (5) or  (6)) and the last value of dP/dX (at XF) considered to 
be given accurately by the solution to the complete equations, and the solution w a s  then 
carried out as before, except for the fixed values of dP/dX. The f i t  to dP/dX in these 
cases  w a s  

where 

The values of XF (the switching point) used with equation (48) were as follows: 
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APPENDIX A 

KO = 15 XF = 100 

8 Z K , 6 1 2  XF = 10 

4 Z q d 6  h F =  1 

-0.75 d 5 3 XF = 0.1 

-1 E K O  E -3 XF = 0.01 

KO< -3 No switch 

As stated previously where the first portion of an integral was solved in closed form in 
order to provide an accurate start to a solution, the interval to which the closed form 
applied extended from X = ~0 to  X = Xi = 104 (eqs. ( lo) ,  (13), (26), (39), and (43)). 

Where coefficients and constants were needed for solving for the aerodynamic coef­
ficients, they were  taken as follows: G which relates X and is given by Monaghan 
(ref. 11) as 

'I3 - 3.65Npr 

2.59 (A21 

For a Prandtl number of unity, the result from equation (A2) agrees with that obtained 
from laminar-hypersonic- local-similarity-boundary-layertheory (ref. 1) where 

G = 1 . 7 2 0 8 Y  -+ 0.3859)ilk 
Equation (A3) is that used for the computations in this paper. 

The coefficient C in the linear formula for viscosity is according to the T-prime 
method 

where the prime designates evaluation of the parameter at the reference temperature 
(T-prime). For the temperature ratio T'/T,, Monaghan's constants were used so that 
(for Npr = 1) 

T' - 1-= 0.468 + 0 . 5 3 2 3  + 0 . 1 9 5 L M ,  2 
T, T, 2 

Calculations were done for air and helium. For air, Keyes' three-constant modified 
Sutherland formula was assumed to apply for  viscosity (ref. 12) and for helium a power 
law was assumed to represent the viscosity so that C was given by 
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with T' and T, in OK,where 

Helium -0.353 
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APPENDIX B 

APPROXIMATE SOLUTIONS FOR VISCOUS INTERACTION 

PFWSSURE DISTRIBUTION 

To first order for values of P greater than but not too close to 1, equation (2) may 
be written as 

Combining equation (Bl)with equation (1)and with K = KO + K6 and K4 = 1 

If furthermore dP/dX is assumed to be essentially constant so that dP/dh may be 
taken as (P - Po) /X without large e r r o r ,  equation (B2) becomes 

[p-%Fi 


3 


where equation (B3)is applicable to  both positive and negative %. 
If equation (B3)is restricted to K,2 0, 

Equations (B3)and (B4)have the disadvantage that P is not an explicit function of 
X; however, they do show the proper behavior of P with X and equation (B4)exhibits 
the peak in (P - Po)/& given by the "exact" solution (fig. 1). The accuracy, compared 
with the ''exact" solution, increases as K, increases. Although K4 has been assumed 
as unity in this solution, the value of (P - Po) /X for a value of K4 other than unity may 
be obtained by simply multiplying the value of (P - P o ) / X  for  K4 = 1 by the proper 
value of K4. 

Further approximations of equation (B4)allow the pressure parameters to be made 
a function of A. For one solution let P - Po thus, 

Po - 1P - PQ= 1/2y(Y + 1) ­
h P O  



APPENDIX B 

Equation (B5)is a slightly less restrictive form of the ‘“exact”result for K, = ~0 with 
A = 0 given after equation (5). It may be noted that the equation fo r  = w is equiva­
lent to  that given in reference 4. Equation (B5)is reasonably close to the exact result  
f rom equation (5) down to KO 0.5. 

Another solution may be obtained for P >> Po (large A), and equation (B4) 
be come s 

For  X -L 03, only the first te rm remains; thus 

p - Po 3 y(y + 1)
x +-IT2 


Equation (B7)is the same as equation (ll),except for K4 which can be put in as a multi­
plication factor as discussed after equation (B4). 
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TABLE I.- VALUES OF SEVERAL USEFUL ASYMPTOTIC PRESSURE PARAMETERS 

Po Jpo 

K, 


~~ ~ 

~. 
m m m 2.5923 m W 2.9814 

15.0 380.16 19.498 2.5849 502.25 22.411 2.9748 
12.0 244.08 15.623 2.5809 322.25 17.951 2.9711 
10.0 170.16 13.045 2.5759 224.47 14.982 2.9666 
9.0 138.24 11.758 2.5722 182.24 13.500 2.9632 
8.0 109.67 10.472 2.5670 144.46 12.019 2.9584 
6.0 62.625 7.9136 2.5484 82.231 9.0681 2.9414 
5.0 44.136 6.6435 2.5305 57.779 7.6012 2.9249 
4.0 29.000 5.3852 2.4997 37.764 6.1452 2.8960 
3.0 17.208 4.1483 2.4409 22.180 4.7096 2.8399 
2.5 12.560 3.5440 2.3903 16.043 4.0054 2.7905 
2.0 8.7337 2.9553 2.3136 11.000 3.3166 2.7136 
1.5 5.7153 2.3907 2.1945 7.0355 2.6525 2.5896 
1.0 3.4727 1.8635 2.0096 4.1142 2.0283 2.3870 
.75 2.6239 1.6198 1.8852 3.0225 1.7385 2.2448 
.50 1.9408 1.3931 1.7388 2.1562 1.4684 2.0727 
.25 1.4064 1.1859 1.5741 1.4919 1.2214 1.8756 
.15 1.2297 1.1089 1.5050 1.2762 1.1297 1.7924 
.10 1.1487 1.0718 1.4701 1.1781 1.0854 1.7504 
.05 1.0721 1.0354 1.4350 1.0862 1.0422 1.7085 
0 1 1 1.4000 1 1 1.6667 
-.05 .93207 .96544 1.3653 .91940 .95885 1.6252 
-.10 .86813 .93173 1.3310 .a4408 .91874 1.5840 
-.15 .a0798 .a9888 1.2974 .77378 .a7965 1.5432 
-.25 .69834 .a3567 1.2315 .64723 .a0451 1.4627 
-.50 .47830 .69159 1.0758 .40188 .63394 1.2679 
-.75 .32058 .56620 .93256 .23730 .48713 1.0825 

-1 
-1.5 

.20972 

.082354 
.45795 
.28697 

.a0141 

.57395 
.13169 
.031250 

.36289 

.17678 
.go722 
.58926 

-2.0 .027994 .16731 .39040 .0041152 .064150 .32075 
-2.5 .0078125 .088388 .24749 .0001286 .01134 .11340 
-3.0 .0016384 .0404077 .14167 0 0 0 
-4.0 .0000128 .003578 .02504 
-5.0 0 0 0 

y = 7/5 y = 5/3 

-6.0 

-8.0 

-9.0 

-10.0 

-12.0 

-15.0 
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(a) y = 7/5;windward surface. 

Figure 1.- Pressure ratio parameter as a function of the viscous interaction parameter 
for a flat plate at various inclinations to the undisturbed flow. 
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Figure 1.- Continued. 
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Figure 1.- Concluded. 
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Figure 2.- Local values of exponent n in power law for pressure distribution (p = xn) 
as a function of the viscous interaction parameter. 
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Figure 3.- Average pressure parameter as a funct ion of viscous interaction parameter for  a two-dimensional 
f lat plate at various incl inations to undisturbed flow. 

35  




0 10-L 10-1 1 10 

l L  
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Figure 3.- Continued. 
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Figure 3.- Concluded. 
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(a) y = 715; windward surface. 

Figure 4.- Average pressure parameter for a tr iangular planform flat plate as a funct ion of viscous interaction parameter 
at various incl inations to undisturbed flow. 
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Figure 4.- Continued. 
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Figure 4.- Continued. 
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Figure 5.- Normal-force parameter as a function of angle of attack for various values of viscous interaction parameter. 
Zero thickness two-dimensional flat plate. 



CN - c 
N, 0 

‘L‘N, 0 

0 2 4 6 
K 

8 10 12 14 
a! 

(b) y = 5/3. 

Figure 5.- Concluded. 



‘N - ‘N 
‘c r‘N,o 

(a) y = 7/5. 

Figure 6.- Normal-force parameter as a function of angle of attack for various values of viscous interaction parameter. 
Zero thickness triangular planform flat plate. 
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Figure 7.- Effect of variations in the  viscous interaction parameter on in i t ia l  normal-force-curve slope. Zero thickness plate. 
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Figure 8.- The contributions of the windward and leeward surfaces to moment coefficient of a two-dimensional flat plate. 
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Figure 9.- Effect of viscous interaction on average skin f r ic t ion of f lat plates at  zero angle relative to incident flow. 
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(a) y = 7/5; T,/Tt = 1. 

Figure 10.- Effect of viscous interaction on average skin-fr ict ion contr ibution of the windward and leeward surfaces 
of a two-dimensional f lat plate. 
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Figure 10.- Continued. 
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Figure 10.- Continued. 
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Figure 10.- Continued. 
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(e) y = 7/5; T,/T~ = 0.2. 

Figure 10.- Continued. 
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Figure 10.- Continued. 
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(g) y = 5/3; Tw/Tt = 1. 

Figure 10.- Continued. 
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Figure 10.- Continued. 
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Figure 10.- Continued. 
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Figure 10.- Continued. 
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Figure 11.- Effect of viscous interaction on the average skin-fr ict ion contr ibution of the windward and leeward surfaces 
of a tr iangular planform flat plate. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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(e) y = 7/5; T ~ / T ~= 0.2. 

Figure 11.- Continued. 
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Figure 11.- Continued. 
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(g) y = 5/3; Tw/Tt = 1. 

Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Concluded. 
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(a) Air.  

Figure 12.- Total average skin f r ic t ion without viscous interaction for  a two-dimensional f lat plate at zero angle of attack ut i l iz ing 
Monaghan's method. Sharp leading edge and Prandtl  number 1. 
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Figure 12.- Concluded. 
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(a) Lift-drag ratio as a function of l i f t  coefficient. 

Figure 13.- Example of lift and drag results obtained wi th  and without the effect of viscous interaction. Two-dimensional zero-thickness f lat  plate 
with adiabatic wall temperature at  Mach number 20 in hel ium flow. 
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Figure 13.- Concluded. 
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Figure 14.- Effect of viscous interaction on (L/Dlmax in air and helium. Zero thickness flat plate. 
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Figure 15.- Correlation of [L/Nmax values according to parameters suggested by linear theory. Zero thickness flat plate. 
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Figure 16.- Effect of viscous interaction on rat io of normal-force-curve slope to average skin f r ic t ion at 
zero angle of attack for zero-thickness plates. 
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Figure 17.- Upstream l im i t  for applicability of local s imi lar i ty solution. Curves shown are for 
y = 7/5 but  for values of y between 1.2 and 5/3 they change only about 10 percent. 

84 NASA-Langley, 1966 L-4880 



“The aeronautical and space activities of the United States shall be 
conducted so as to  contribute . . . to the expansion of hziman Rnowl­
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AND SPACE A C T  OF 1958AERONAUTICS 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri­
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con­
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 


Washington, D.C. PO546 



